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LElTER TO THE EDITOR 

Inhomogeneous two-species annihilation in the steady state 

E Ben-Naim and S Redner 
Center for Polymer Studies and Department of Physics, Boston Univenily, Boslan, MA 
02215, USA 

Received 17 Februaly 1992, in final form 13 March 1992 

AbslraeL We investigate steadystale geometrical properlies of the reaction inlerface in 
the lwo-species annihilalion pmces, A + B -. 0, when a flux j of A and B panicles 
is injected 81 opposite extremities of a finite domain. By balancing the input Am with 
the number of reactions, we determine that the width w of the reaction zone scales 
as j-'13 in the large flux limit, and that the concentration in lhis zone is proponional 
to j213. This same behaviour is deduced from the solulion 10 the reaction-diffusion 
equation. In the low flux limit, the concentration is almosr independenl of position and 
is proportional 10 &. In the latter case, the local reaclion rate reaches maximum a1 
Ihe edges of Ihe system ralher than at the midpoinl. When the two species approach at 
a finite velocity, there exists a critical velocity, above which lhe reactants essentially pass 
through each other. Resulls similar IO those in one dimension are found in two- and 
three-dimensional radial geometries. Finally, we apply the quasistatic approximation lo 
our steadystate solution to recover thc known time dependence for the reaction zone 
width for the case of inilially separated componenls with no extemal input. 

A fundamental ingredient that controls the kinetics of the two-species annihilation 
process, A+B-+ 0, is the rate of reaction in the interfacial region between a domain 
of As and a domain of Bs. A natural way to study this interface is to prepare a system 
with initially separated components and then monitor the reaction rate as a function 
of time, as first studied by Gdlfi and RAn [l]. This type of geometry is also relatively 
more amenable to experimental investigation [2] than the more extensively studied 
case of a homogeneous, but random, initial condition. In a mean-field description, 
the kinetics is described by the reaction-diffusion equations 

= DAV2cA - kcAcB 

-3 = DnV2cB - kcAcB 

a t  
ac 
a t  

where Di is the diffusion coefficient of species i and k is the reaction constant. 
For the case of initially separated components, the initial conditions are c A ( z , t  = 
0) = co for I > 0 and c A ( z , t  = 0) = 0 for z < 0, and conversely for the 
concentration of Bs. On the basis of scaling arguments, and through solutions of 
the reaction-diffusion equation, Gdlfi and Rdcz 111 found that the width w of the 
reaction zone increases with time t as tl/', and that the reaction rate vanishes as 
t -2 /3 .  Numerical simulations appear to confirm this result in two dimensions [3,4], 
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but different exponents appear to hold in one dimension [5,6]. Related geometrical 
properties of the reaction interface have also been studied for the random initial 
condition [7]. 

We discuss here new results for the complementary situation in which particles 
are confined to a finite d-dimensional bar with equal fluxes of As and Bs injected at 
opposite ends of the system. Our goal is to understand the geometrical properties 
of the ensuing steady state. Notice that in the steady state, we can redefine the 
concentrations by cA + DBcA and cB + DAce to map the problem to the case of 
equal diffusion coefficients for the two species. Thus without loss of generality, we 
posit equal diffusion coefficients for the two species. This system is described by the 
steady state equations 

DV2cA = kcAcB 

DV2cB = kcAcB 

with the boundary conditions 

and 

The reflecting boundary condition imposed on the As at I = -L, and on the Bs at 
I = L ensures that the reactants remain within [ - L , L ] .  We emphasize that these 
reaction-diffusion equations provide a mean-field description of the reaction interface 
in which all spatial fluctuations and the role of the spatial dimensionality is ignored. 
Within this approximation, we shall determine the extent of the reaction zone and 
the spatial distribution of the two species. 

A rough estimate for these two quantities can be obtained from simple heuristic 
arguments (figure 1). Consider first the situation of a large input flux, so that the 
concentration profile is linear near the domain boundaries with the magnitude of 
the slope proportional to j / D .  If we define the reaction zone as the region for 
which the concentrations of both species are non-negligible, then the concentration 
in the reaction zone should be of the order jw/D, where w is the reaction zone 
width. Consequently, the number of annihilation events per unit time is of order 
kcAcBw, which is obtained by integrating the reaction term over the reaction zone. 
This number should equal the flux of particles j entering the domain. Therefore, 
balancing these two rates gives 

kcAcBw-  k - w - j  (3, 
or 

W O  - ($) ' I 3  

(4) 

Thus we conclude that the width of the reaction zone is proportional to j- '13, 
and that the typical concentration in the reaction zone is 
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Figure 1. Reaction geomelry in the steady stale. A particles are injected 31 the right 
edge and B panicles are injected at lhe lefl edge, both at lhe Same rale j .  Shown 
are the spalial dislribulion of As and Bs (dashed), and the sum of their concentralions 
e + ( = )  (solid) in the limil of large flux, j = 1W, based on lhe numerical solution lo the 
sleady-state reaction4iKusion equalion for a system with L = k = D = 1. 

These results apply as long as the width w is much less than (and independent of) L .  
From (5). this corresponds to the flux j being greater than a threshold value j,, which 
scales as j, = D2/kL3.  When j < j,, the rate balance argument fails, indicative of 
a different scaling behaviour for this case. We will outline an alternative approach 
for this limiting situation based on the approximate solution to the reaction-diffusion 
equations (see below). 

For a quantitative analysis, it is convenient to consider the reaction4iffusion 
equations for the difference, c_ = cA - cB, and the  sum, ct = cA + cB, from which 
the behaviour of cA and cB can easily be inferred. From (Z), c- obeys c- (z)" = 0, 
with the boundary conditions Dc-(x = iL)' = j .  The corresponding solution is 
e-(.) = j(x - s o ) / D ,  with I, determined by the constraint that the number of 

annihilate at the same rate. Thus, imposing J:i c_(z)dz = 0, gives z, = 0. This 
condition also specifies the location of the centre of the reaction zone. 

Using (Z), the sum of the concentrations obeys the equation Dc+(z)" = 2kcAcB, 
which can be rewritten in a closed form by using 4cAcB = c: - c t  to yield, 

& eqiia;j ;he iiiiiii;ei of Bs in [hi: dor,aiii, sinm ihe ?WO are u7jectee 

with the boundaly conditions Dc+( z = 3 4 ) '  = .tj. Since c+(z) is an even function 
of z, it is sufficient to consider z > 0 only. Notice also that ct E c- for positive 
z outside the reaction zone, since the concentration of the minority species B is 
negiigiboie in this region. ( in  fact, the ansatz c+ = ic-1 satishes the (7) everywhere, 
except at the origin.) 

For large flux, j > j,, we attempt a power-series solution for c+(x) in the 
reaction zone, namely c + ( I )  = co + c2zz + c4z4 + . . . . Substituting a three-term 
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series truncation for c + ( z )  in (7), we find 

with wu = ( D 2 / j k ) l I 3 .  In general, the coefficient of zZn in the series is proportional 
to j / ( D w P - ' )  - j2(nt1)/3, with the numerical prefactor rapidly converging to a 
limiting value as more terms in the series approximation fo c + ( z )  are retained. 

We may now determine the reaction zone width by equating c+ to c- at 2: = w. 
Up to the order given in (8). this prescription yields w Y 1.179wU, in agreement with 
our previous flux balance argument. From (S), we also find that the concentration 
in the reaction zone is of the order of cu a ( j 2 / D k ) l I 3 .  Outside the reaction zone, 
c+ matches smoothly with Ic-1, as illustrated in figure 1. It is worth noting that the 
above results for co and w can be inferred by determining the scaled variables that 
bring (7) into dimensionless form. 

It is instructive to determine the concentration of the minority species outside the 
reaction zone by direct means. For the concentration of Bs at large I ,  we substitute 
cA = cB + ( j z / D )  in (2) to give DcB(z)" = kcB(cB + j z / D ) .  In the domain 
2: > w, ~ ~ ( 2 : )  << jx/ D and therefore the differential equation reduces to the Airy 
equation, 

C B ( 2 ) "  = 2 C B ( 2 )  2 = X / W , .  (9) 

The limiting case I > w corresponds to z > 1, for which the appropriate (decaying) 
solution is 

In this expression, the prefactor has been chosen to match the small-z power series 
representation for c t ( z )  when 2: E w,,. 

Thus in the high-flux limit, the concentration of Bs is approximately - j x / D  for 
z < -w and exponentially small for z > w (see (10)). In the reaction zone itself, 
121 < w, the concentration of Bs can be deduced by writing cB as (ct - c - ) / 2  and 
using the above expressions for c+ and c- in the reaction zone. This yields cB (Y j2I3. 
The concentration of As is merely the mirror image of c B ( z )  about I, = 0. 

In the low-flux limit, j < j,, the approach presented above fails to satisfy the 
boundary conditions. However, for this case, we exploit the fact that the concentration 
must be slowly varying in z. Therefore we postulate that ct(2:) = co + c2z2 over 
the entire domain 1x1 < L. With this assumption, the boundary conditions on c+ 
at z = f L  now yields c2 = j / 2 D L .  By substituting this form into (7), we then 
find that the constant co is given by e, = m. With these two leading terms, 
the remaining terms in an infinite power series representation of the solution can 
be evaluated, and it is straightfonvard to show that these higher-order t e r m  are 
negligible. Thus, the approximate form for c + ( z )  for j << j, is 
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Flgum 2. Concentration of Bs in the low-flux limit for the case j = 0.01. ? l e  order 
of magnitude and the variation in this concentration over the extent of the domain are 
indicated. 

from which the concentration of each species can be reconstructed by 
c ~ , ~  = ( c + ( z )  * j x / D ) / 2  (figure 2). Notice that the magnitude of the variation 
in concentration (-- j) is small compared to the value of the concentration itself 
( - JI). More precisely, the ratio ( c + ( L )  - c+(O))/c+(O) is proportional to 

A quantity which characterizes the spatial extent of the reaction is the local 
reaction rate R ( x )  = k c A ( x ) c B ( z )  = k(c: - c 5 ) / 4 .  Using the previously obtained 
expressions for c+ and c - ,  we find 

( 3  / 3,) 1'2. 

( j ~ ) ~  -constant x ( 3 ~ ) ~  
j +constant x j3I2x2 

j > j, 
3 < j ,  ( 1 2 )  R ( x )  { 

with both constants positive, so that the reaction rate exhibits a unimodal to bimodal 
transition at j E j, (figure 3). For large flux, the reaction rate is sharply peaked 
around x = 0, with a width w,, but in the small flux limit, particles are more likely 
to react near the boundary of the domain rather than in the centre. 

In the limit of vanishing flux, we can, in principle, find the exact expression for 
the reaction rate. This limit is defined by the average time between the injection of 
an A B  pair, t j  = l/j,  being large compared to the average time to diffuse across 
the domain, t ,  0: L 2 / D ,  so that the system is occupied by at most two particles. 
Tb solve for the kinetics of the two-particle system, we define z1 = L - x A  and 
x 2  = L + zB, where zA(zB) is the position of particle A( B). Both variables satisfy 
0 < x l r z 2  < 2L, and a reaction occurs whenever zI + z2 = 2L (figure 4). By 
this formulation. the interacting system is mapped onto a two-dimensional random 
waiic in tne first-quadrant triangie x 1  + z2 < ii, with refirciing boundary conditions 
for zI, x 2  = 0, and absorbing boundary conditions for z1 + z2 = 2L. To specify 
the initial conditions, we assume that the input flux at one boundary is uncorrelated 
with that at the other boundary. Therefore, the first particle attains its asymptotic 
uniform distribution in the domain before the second particle is injected. For the 
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Flgure 3. Spalial vanation of the local reaction rate R(z) = kc~(z)cg(z) in the case 
of high flux, j = 100 (solid), and low flux. j = 0.01 (dashed). The latter data has been 
multiplied by a factor of 10,000. 

B A - 
x2 X1 

Plgure 4. Equivalence between two annihilating'random w a l k  in a finite interval of 
length ZL, and a single two-dimensional random walk in a triangular domain with 
reflecting boundary conditions for z1 = 0, 2 2  = 0. and absorbing boundary conditions 
for z 1 + q  = 2L. Also shown is a plot of the flux reaching this boundary, or equivalently, 
the lmal reaction rate R(z), as a function of position along the boundaly. This data is 
based on exact enumeration inside a triangle of base 40 after 2003 lime steps. 

equivalent two-dimensional problem, this leads to the initial condition p ( q ,  z2, t = 
0) = (6(zl) + 6(z2)) /4L.  The reaction rate corresponds to the total flux at  the 
absorbing boundary zI + z2 = 2L.  One way to find this flux is by exact enumeration 
of the probability distribution for the aforementioned initial distribution of random 
walks. This method confirms that the reaction rate is indeed bimodal (figure 4). 

An interesting and natural generalimtion is the situation where the two species 
have a superimposed drift toward each other with velocity U, as would be the case 
if the two species where oppositely charged and placed in an external electric field. 
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In the high-flux limit, j > j,, the density profile exhibits a boundary layer of order 
D / u  from the reaction centre, as long as v is greater than D / L .  Outside the 
boundary layer the concentration of majority species is j/v and that of the minority 
species is exponentially small. Inside the boundary layer the drift is negligible and 
the concentration profile merely reduces to that of the zero drift case in the high-flux 
limit. "hiis approach is valid as long as the boundary layer D / v  is larger than the 
reaction zone width ( D z / j k ) 1 / 3 ,  or v < vu, with the critical velocity given by 

vu = (Djk)"' .  (13) 

In the high-velocity limit, we find the amusing feature that the density profile of 
each species is highly concentrated near the boundary opposite the entrance point. 
This result can be understood by first rewriting the reaction-convection-diffusion 
equation in dimensionless form. Introducing c,,~ = (v2/Dk)E, , ,  and I = D Z / u  
yields the scaled equations, 

with tne boundary conditions 

The scaled flux e = 3 = ( is vanishingly small when v > vw 721 leading 
order, then, the input is zero, and this implies that the reaction term must vanish, as 
can be seen by integrating (14) over the length of the box and using the boundary 
conditions. This fact suggests a perturbative approach, namely E, = E,, + €E,, + . . . 
and E B  = EBo + € E B I  + ' .  . . Solving for E, gives E, = c,exp(-Z - L )  in the 
vicinity of -i and E, vanishing elsewhere, and conversely for the Bs. Thus the 
parLILIc arc W I I I I I I C "  ,U a vuurruary l a p  w,,u>cI WlULll  0 U, U I U G L  ulrrry "1 DLa IGU U l l l L J  

where = Lv/D.$> 1. This zero-order solution can be used in (14) to obtain the 
corrections to this leading behaviour. 'Itansforming back to the initial variables, we 
find, to leading order. that the  density is proportional to v * / D k  within a boundary 
layer of order D / v ,  and that corrections are of the order j / u .  This gives a reaction 
rate which is strongly peaked near the boundaries of the box (figure 5). In the 
low-flux limit, we find that this same behaviour still applies as long as U > D /  L .  

We can also determine the nature of the reaction zone in a higher-dimensional 
analog of the finite linear domain. Consider the radially symmetric situation in 
which the reaction takes place between two concentric hyperspherical shells of dif- 
ferent radii, with As injected at the outer radius, and Bs injected at the inner ra- 
dius. The concentration depends on r only, and the correspondin boundary con- 
ditions are .~ Dr;-'cA(r,,)' ~~ ~~ = j ,  D r B  CA(?-,)' = 0, and 0.:- cB(rB)' = -3, 
Dri -kcB(rA) '  = 0. The equation for the concentration difference is 

- 

---.:..I- ~-~ -..-=..-a .̂  I c ̂ .._ _I"_. a-....- ... I.^^^ ... :A.L 2" -c,.-.aa- .. ..:... :" """LA .. -:.̂ 

d - I  F 
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Figure S. The density profile in the highrelacity limit. S h m  are lhe densities as 
evaluated by exact enumeration with the following paramelem L = 30, v = 0.2, j = 
loY4 and D = k = 1.  

which, together with the boundary conditions, gives 

a210g a - b210g b - A )  d = 2  
a2 - b2 2 

(17) 
d = 3  

with ro = exp 

2( a3 - b3) 
with r " - - 3( a2 - b*) (:-f) 

c - (r )  = 

As in the one-dimemional case, the position of the reaction zone centre is de- 
termined by requiring that J:: C-(  r) rd-' d r  = 0. When both radii are large with 
their difference remaining finite, then ro '3 (a + b)/2. However, if the inner radius 
is much smaller than the outer radius, then rU E a/& for d = 2 and rU E 2a/3 for 
d = 3. The procedure for finding the individual concentrations of each species closely 
follows that used for the one dimensional case. In the high-flux limit, c+ is simply 
equal to I C - I  outside the reaction zone, and c+ has a power series representation 
(which is not necessarily even about ro) within the reaction zone. Following the same 
method of analysis as in one dimension, we find the same scaling behaviour, namely, 
w - j - ' I 3  and C(T = rU) - j2I3. Similarly, in the low-flux limit, we find that the 
concentration scales as c - &, and that the magnitude of the spatial variation of c 
is of order j. 

By applying the quasi-static approximation to our description of the steady-state, 
we can also determine the time dependence of the width of the reaction zone in 
the GAIA-RAcz problem, where the two components are initially separated and with 
no external source of particles. The basis of this approximation is to neglect the 
time derivative in the diffusion equation and shift this time dependence to a moving 
boundary condition [8]. For the GAM and RAcz problem, the growing depletion layer 
is the source of the moving boundary which produces the requisite time-dependent 
flux. For theinitial conditions cA(r,l=O) = c , H ( s )  and cB(r,t=O) = cuH(-r), 
with H(z) the Heaviside step functioc and taking D, = D ,  ,= D in (l), then 
c- (z , l )  satisfies 6- = Dc:, with the corresponding initial condition c - ( z , t = O )  = 
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cu(2H(z)  - 1). TXe solution of this equation is 

with the error function defined by erf(y)  = -& exp(-u2)du. Thii solution leads 
to a depletion zone of the order of a. The (time-dependent) flux into the reaction 
zone is thus given by j ( t )  - Dc-(z=O,t) '  - D c , , / ~ .  We now use this flux in 
the steady-state expression for tu ((5)).  This yields w - ( D 3 t / k 2 c ~ ) 1 / 6 ,  in agreement 
with the Gdlfi and Rdcz result. A posmioii, using the high-flux h i t  is appropriate, 
since the flux j - t - l I z  is much greater than j, - L-' - r 3 1 2 .  

In conclusion, we have investigated the geomeaical properties of the reaction zone 
for two-species annihilation, when particles of each species are injected at a tixed rate 
j from opposite edges of the system. Our solution to the reaction-diffusion equation 
provides a mean-field description of a one-dimensional reaction zone geometry. In 
the limit of large flux, the reaction zone width is proportional to j - I j 3 ,  and the 
concentration within this zone is of order jzl3. In the opposite limit, the concentration 
assumes a nearly constant value of order j112 throughout the system, in which the 
maximal spatial variation is of order j. The former case leads to  a sharply localized 
reaction rate near the domain centre, while in the latter case, the reaction rate is 
maximal near the extremities of the domain. Our approach is easily extended to 
a variety of potentially relevant situations. Particularly noteworthy is the case of a 
finite superimposed drift of the reactants towards each other. When the drift velocity 
exceeds a threshold value, there is a strong tendency for the reactants to pass through 
each other, a potentially destabilizing mechanism of the reaction interface. 

We thank M J Stephen for helpful discussions. We also gratefully acknowledge grants 
from the ARO and NSF for partial support of this research. 
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